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A numerical simulation is performed to study the velocity, streamlines, vorticity and
shear stress distributions in viscous water waves with different wave steepness in
intermediate and deep water depth when the average wind velocity is zero. The
numerical results present evidence of ‘clockwise’ and ‘anticlockwise’ rotation of the
fluid at the trough and crest of the water waves. These results show thicker vorticity
layers near the surface of water wave than that predicted by the theories of inviscid
rotational flow and the low Reynolds number viscous flow. Moreover, the magnitude
of vorticity near the free surface is much larger than that predicted by these theories.
The analysis of the shear stress under water waves show a thick shear layer near
the water surface where large shear stress exists. Negative and positive shear stresses
are observed near the surface below the crest and trough of the waves, while the
maximum positive shear stress is inside the water and below the crest of the water
wave. Comparison of wave energy decay rate in intermediate depth and deep water
waves with laboratory and theoretical results are also presented.

1. Introduction
Free surface flows are important in many areas of engineering and applied science,

including mechanical and chemical engineering, naval hydrodynamics, physical
oceanography, air–sea interaction, marine boundary layer flows, capillary and porous
media flows. In naval hydrodynamics, interaction of wakes and vortices with the free
surface is of particular interest as revealed by synthetic-aperture-radar (SAR) imaging.
Tsai & Yue (1996) outlined many aspects of the computation of the nonlinear free
surface flows and water waves is one such application area. As global and ocean
circulation models are developed and advanced to a stage to include the coupled air–
sea interaction, it becomes increasingly important to study the near surface physical
processes which can affect energy, momentum, heat and mass exchange on the water
surface. Moreover, correct understanding and better accuracy are highly desirable
while studying breaking waves and the resulting heat, mass and gas transfer as well
as their interactions with each other.
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Water waves are generally studied under three broad categories: (a) potential flow,
(b) inviscid rotational flow and (c) viscous flow. The main characteristics of the
potential flow are inviscid, irrotational velocity field and exclusion of turbulence. In a
potential flow, the continuity and momentum equations for the flow are replaced by
the Laplace equation for the velocity potential. The analytical solution can be found
under corresponding kinematic, dynamic, lateral and bottom boundary conditions.
This is well documented in Lamb (1932) and Milne-Thomson (1994) and is also
elaborately explained in Dean & Dalrymple (1984). Moreover, research on this subject
spans many years and is covered widely in many books and journals.

A major hurdle to the above potential flow assumption is that it does not include
all the characteristics of the flow. Hence, it is inaccurate for the flows with a boundary
layer, which includes water waves. According to Saffman (1981), if vorticity ω = 0
everywhere in an incompressible fluid, the fluid in reality ceases to be a fluid; it loses
its infinite number of degrees of freedom, which makes possible the infinite variety of
fluid motion. In the past, there had been several attempts to formulate vorticity in the
inviscid solution for water waves. An analytical solution is outlined in Lamb (1932)
for inviscid water waves with vorticity, as given by the exact solution of Gerstner’s
trochoidal wave theory (Gerstner 1802). Vanden-Broeck (1996) used a boundary
integral equation method to numerically compute the periodic waves with constant
vorticity. Teles da Silva & Peregrine (1988) used a boundary integral method for
periodic and solitary waves with constant vorticity. However, these results are limited
in application due to special vorticity distribution. Dalrymple & Kirby (1986) used
boundary integral method to study the interaction of small amplitude water waves
with bottom ripples. More recently, Constantin (2001) and Constantin, Sattinger &
Strauss (2006) have tried to formulate the solution for the inviscid and rotational
water waves. For a viscous low-Reynolds-number flow, the convection terms in the
full Navier–Stokes equations are dropped and original nonlinear equations become
linear. This allows an analytical solution to be found for the water wave with small
amplitude. The solution for low-Reynolds-number viscous water waves is outlined in
Kinsman (1965) and Lamb (1932). Behroozi (2004) used the principle of conservation
of energy to derive the relationship between fluid viscosity and decay coefficient of
the surface waves. Wang & Joseph (2006) used viscous potential flow and viscous
correction potential flow method to analyse the decay of free gravity wave due to
viscosity. In recent years, in order to include the effect of viscosity, a visco-potential
free surface flow formulation has been developed by Dutykh & Dias (2007) and Liu &
Orfila (2004).

Several numerical methods have been developed for free surface flows. They include
front tracking method by Tryggvason et al. (2001), the boundary integral method by
Hou, Lowengrub & Shelley (2001), the phase field method by Jacqmin (1999), the
second gradient method from Jamet et al. (2001), level set method by Sethian (1999)
and marker-and-cell method (MAC) by Harlow & Welch (1965). Smoothed particle
hydrodynamics (SPH) method is relatively new development; several works pertaining
its applications in free surface flows are outlined by Monaghan (1994), Monaghan &
Kos (1999) and Dalrymple & Rogers (2005). By imposing the condition of zero shear
stress on water surface, Huang, Zhang & Lee (1988) and Dong & Huang (2005) used
the finite analytic method from Chen & Chen (1982, 1984) and a modified MAC
method to produce the velocity distributions and energy decay rate of viscous water
waves when they investigated the generation and propagation of water waves in a
viscous wave plume. Similarly, using the kinematic boundary condition on the water
surface, Thomas, Leslie & Williams (1995), Liu & Lin (1997), Li & Fleming (2001),
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Park et al. (2003), Maronnier, Picasso & Rappaz (2003), Hur & Mizutani (2003), Chen
& Nokes (2005) and Lin (2008) calculated the location of water surface by specifying
either zero stress or zero pressure or total zero shear stress on water surface. All of
these calculations have included only water and the air is excluded from consideration.
Hirt & Nichols (1981) developed a volume of fluid (VOF) method to calculate the
shape of free surface, a comprehensive review of the VOF was given by Scardovelli &
Zaleski (1999). Zwart, Burns & Galpin (2007) have developed a VOF method by
defining the volume fractions of air and water separately and used a high resolution
scheme for the equations of mass conservation of air and water, all equations for
velocity, pressure and volume fractions of fluids are then solved simultaneously in a
coupled system. Unlike the VOF method developed by Hirt & Nichols (1981) and
other methods such as MAC, SPH and height function methods, this method not
only includes both water and air retaining the continuity of velocity, pressure and
shear stress on water surface but also eliminates the need to reconstruct the shape of
water surface during the calculation. Current work uses this method to simulate the
progressive water waves.

By their nature water waves are transient, nonlinear, rotational and viscous.
However, since these properties make them complex and difficult to analyse, they are
often simplified to linear, irrotational and inviscid water waves. By doing so, many
important features related to understanding of basic physics in the viscous water
waves have not been revealed. The vorticity and shear stress are two such important
quantities in wave dynamics which need thorough examination. The presence of
vorticity and shear stress is a strong indication of rotational and viscous behaviour
of the water waves. In the past, most of the work related to the vorticity in the
water waves has been confined to the spilling breaker flows, as outlined by Duncan
et al. (1994), Lin & Rockwell (1995) and Dabiri & Gharib (1997). Lundgren &
Koumoutsakos (1999) have described free surface viscous flows in a vortex dynamics
formulation using vorticity field as the primary variable and expressing velocity as a
functional of the vorticity through the Biot–Savart integral thus eliminating pressure
from the formulation. However, the zero shear stress boundary condition used to
calculate the value of the vorticity on the surface is not applicable in the cases
where wind is blowing over the moving water waves. According to Longuet-Higgins
(1992), the occurrence of ‘parasitic capillaries’ on the forward face of moderately
short gravity waves is the major source of vorticity. Fulgosi et al. (2003) performed
direct numerical simulation (DNS) of the turbulence in a shear air–water flow with
a deformable interface in a capillary wave regime. According to Thais & Magnaudet
(1995), there are indications of the existence of an orbital vorticity below waves
when wind is present. Even weak, this vorticity can dramatically change the mean
momentum balance, resulting in Langmuir circulations, or the turbulence balance as
shown by Cheung & Street (1988) and can have very strong consequences. Since,
vorticity is very sensitive to the gradient of velocity, it is very sensible to describe the
high Reynolds number flow in terms of vorticity. Moreover, the action of the viscous
force can be observed in terms of higher vorticity and shear stress. Hence the question
arises whether there is any presence of vorticity and shear stress in the progressive
water waves without wind, i.e. progressive water waves with air following the water
waves. If so, what is the maximum value of the vorticity and shear stress in the water
waves? Are they symmetrical under the crest and trough? How does the structure
and the behaviour of vorticity and shear stress change with varying water depth and
how does it affect our understanding of wave dynamics? Current work is an attempt
to address these questions related to the structure and the behaviour of vorticity and
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Figure 1. Sketch of the domain used in the simulation.

shear stress in non-breaking, nonlinear, transient and viscous water waves. Numerical
simulation is essential to answer such questions since there is very little experimental
measurement due to the complex nature of the water waves.

Section 2 details on the problem formulation and the governing equations. Section 3
describes the numerical method and the simulation parameters used in the calculation.
Section 4 discusses numerical results. Section 5 summarizes the paper and draws
conclusions from the numerical simulation results and their implications.

2. Problem formulation
The water wave under investigation is modelled as a two-dimensional viscous,

transient and progressive water wave as outlined in figure 1. The frame of reference
for our computations and analysis is a fixed cartesian coordinate system and is aligned
to the bottom of the solution domain near the inlet specified as (x, y) = (0, 0) as shown
in figure 1. The water waves are continuously generated at the inlet on the left end
of the domain and allowed to travel along the positive x direction and dissipate on a
beach at the far right end of the domain. The air present above is ‘moving’ and follows
the motion of water and the average wind velocity is set to be zero. The wavelength
in the problem is given by L, periodic time is T, wave amplitude is a, wavenumber is
k = 2π/L, angular frequency is σ = 2π/T, wave phase speed is c =L/T = σ/k, wave
steepness= 2a/L, depth of water is h and depth of air is h′. According to Zwart et al.
(2007) the free surface flow can be considered as a special case of two-phase flow
where water and air can be described as phase 1 and phase 2 respectively. Hence,
the governing equations can be described in the form similar to two-phase flow as
described in Kleinstreuer (2003, pp. 198–201), Drew & Passman (1999, pp. 68–83). In
the two-dimensional unsteady flow, the full Navier–Stokes equations are given by the
continuity equation for water:

∂

∂t
(ρwfw) +

∂

∂x
(ρwfwu) +

∂

∂y
(ρwfwv) = 0, (2.1)
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the continuity equation for air:

∂

∂t
(ρafa) +

∂

∂x
(ρafau) +

∂

∂y
(ρafav) = 0, (2.2)

the momentum equation in the x direction:

∂

∂t
(ρmu) +

∂

∂x
(ρmuu) +

∂

∂y
(ρmvu) = −∂p

∂x
+

∂

∂x

(
μm

∂u

∂x

)
+

∂

∂y

(
μm

∂u

∂y

)
(2.3)

and in the y direction:

∂

∂t
(ρmv)+

∂

∂x
(ρmuv)+

∂

∂y
(ρmvv) = −∂p

∂y
+

∂

∂x

(
μm

∂v

∂x

)
+

∂

∂y

(
μm

∂v

∂y

)
−ρmg, (2.4)

where the velocity components are given by u and v at each point in space, pressure
is p and g is acceleration due to gravity. fw , ρw and μw represent the volume
fraction, density and viscosity of water, respectively, and fa , ρa and μa represent
the volume fraction, density and viscosity of the air, respectively. Therefore, in air
fa =1, fw = 0, in water fa = 0, fw =1 and in the cell which contains free surface
0 < fa < 1, 0 < fw < 1.

Mixture density ρm and mixture viscosity μm are calculated by

ρm = ρwfw + ρafa, (2.5)

μm = μwfw + μafa. (2.6)

The volume continuity constraint requires that the volume fractions of air and water
must sum to unity, hence

fw + fa = 1. (2.7)

2.1. Initial and Boundary conditions

For the domain shown in the figure 1, when there is no current in water and air,
the solution of the potential flow in the solution domain is given in Milne-Thomson
(1994). The surface elevation η of the wave travelling in the x direction is

η = a sin k(x − ct). (2.8)

The velocity components, pressure and volume of fractions in the water and air are
calculated using complex potential and in the water they are given by

u = a k (c)
sin k(x − ct) cosh ky

sinh kh
, (2.9a)

v = a k (−c)
cos k(x − ct) sinh ky

sinh kh
, (2.9b)

p = ρw

[
a k c2 sin k(x − ct) cosh ky

sinh kh

]
− ρw(u2 + v2) − ρwg(y − h), (2.10)

fw = 1, fa = 0 (2.11)

and in the air are given by

u = ak(−c)
sink(x − ct) coshk(y − h′ − h)

sinhkh′ , (2.12a)

v = ak(c)
cosk(x − ct) sinhk(y − h′ − h)

sinhkh′ , (2.12b)
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p = ρa

[
−a k c2 sin k(x − ct) cosh k(y − h′ − h)

sinh kh

]
− ρa(u

2 + v2) − ρagy, (2.13)

fw = 0, fa = 1. (2.14)

2.1.1. Initial conditions

The initial conditions for the air and water are calculated using the equations for
pressure and velocity in the air and water of the potential flow. Hence, we substitute
t = 0 into (2.8)–(2.14) to get the initial distributions in the domain. The use of the
analytical solution as the initial conditions can substantially reduce the computational
effort.

2.1.2. Boundary conditions

At the inlet the boundary conditions for water and air are calculated by substituting
x = 0 into (2.8), (2.9) and (2.12). On the top, bottom and slope a no-slip wall boundary
is applied in agreement with experimental set-up of Mitsuyasu & Honda (1982). At
the outlet an opening boundary condition is applied. Due to the asymmetry of velocity
resulting in more fluid moving in the wave direction under the wave crest than moving
out under the trough region, there is a mean transport of water from the inlet and it
is calculated by

Q =
1

T

∫ t+T

t

∫ h+η

0

u dy dt =
ac

T sinh(kh)

∫ t+T

t

sinh[kh + ak sin(−σ t)] sin(−σ t) dt,

(2.15)
and it is taken out by setting an outflow un boundary condition on the slope, as seen
in figure 1.

3. Numerical model and simulation parameters
3.1. Numerical model

3.1.1. Domain discretization

The conservation equations described earlier are discretized using an element-based
finite volume method developed by Schneider & Raw (1987). A control volume is
constructed around each mesh vertex as seen in figure 2. The subface between two
control volumes within a particular element is called an integration point (ip) where
the fluxes are discretized. Pressure and velocity gradients are obtained from vertex
values using finite element shape functions.

3.1.2. Equation discretization and solution strategy

Conservation equations (2.1)–(2.4) are discretized at each control volume. The
conservation equations are integrated over each control volume, the volume integrals
are converted to surface integrals using Gauss’ divergence theorem. When the implicit
second-order backward Euler scheme is used for the time derivative, the discrete
representations of (2.1) and (2.2) in the water and air are

V

δt

(
3

2
(ρwfw)n+1 − 2(ρwfw)n +

1

2
(ρwfw)n−1

)
+

∑
ip

(ρwujAj )n+1
ip (fw,ip)n+1 = 0, (3.1a)

V

δt

(
3

2
(ρafa)

n+1 − 2(ρafa)
n +

1

2
(ρafa)

n−1

)
+

∑
ip

(ρau
jAj )n+1

ip (fa,ip)n+1 = 0. (3.1b)
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Figure 2. Element based finite volume discretization. Solid lines are element boundaries and
dashed lines divide the elements into parts. Black dots (•) represent solution unknowns at the
vertices and cross (×) represents integration points where surface fluxes are evaluated. Shaded
region is control volume around each vertex.

The discrete representations of (2.3) (2.4) are given by

ρmV

δt

(
3

2
un+1

ip − 2un
ip +

1

2
un−1

ip

)
+

∑
ip

(ρmu
j
ipAj )n+1un+1

ip

= −
∑
ip

(
pn+1

ip A1
)

ip
+

∑
ip

((
τ ji
m

)n+1
Aj

)
ip
, (3.2a)

ρmV

δt

(
3

2
vn+1

ip − 2vn
ip +

1

2
vn−1

ip

)
+

∑
ip

(
ρmu

j
ipAj

)n+1
vn+1

ip

= −
∑
ip

(
pn+1

ip A2
)

ip
− ρn+1

m giV +
∑
ip

((
τ ji
m

)n+1
Aj

)
ip
, (3.2b)

where, j = 1, 2 gives u1
ip = uip and u2

ip = vip , V represents the volume of a control

volume, Aj
ip the area vector of a subface corresponding to an integration point, δt

the time step and the superscripts n + 1, n and n − 1 means that the quantity is
evaluated at the new and earlier time steps. The advection scheme used to evaluate
fw,ip, fa,ip, uip and vip in term of neighbouring vertex values is written in the form

φip = φup + β∇φ · R, (3.3)

where φup is the upwind vertex value and R is the vector from the upwind vertex to
the integration point, ∇φ is calculated by the nodal gradient of the upwind node. For
the momentum equations (3.2a) and (3.2b) the second-order upwind biased scheme is
used by setting β = 1. For the continuity equations (3.1a) and (3.1b), a high resolution
scheme is used by setting β and φip is bounded by the maximum and minimum
values of φ among the vertex’s neighbours. This scheme is developed by Barth &
Jesperson (1989) and is compared with other high resolution schemes by Darwish &
Moukalled (2003). The mass flow flux is calculated using pressure smoothing technique
for flux through the face of control volume developed by Rhie & Chow (1983). The
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discretization technique has been used in the past by Zwart (2005), Zwart, Scheuerer &
Bogner (2003) and Corte & Grilli (2006).

The set of equations (2.7), (3.1) and (3.2) represents equations for volume fraction,
velocity and pressure fields along with two phases forming a coupled system of
equations at each control volume. Assembled into the global system, these coupled
system of equations are solved simultaneously by using an algebraic multigrid method
developed by Hutchinson & Raithy (1986) and Raw (1996).

3.2. Simulation parameters

The domain in the numerical simulations is similar to the one used in experimental
study by Mitsuyasu & Honda (1982). The size of the domain is 11 m long and 0.8
m high, the depth of the water is h = 0.335 m and the depth of the air is h′ = 0.465
m, a further increase of the length of domain increases the computational work but
has little effect on the solutions in the region x = 3–6 m. The slope of the beach is
1/15 which has been used in the experimental investigation in the past by Peirson,
Garcia & Pells (2003) to minimize the reflection from the right end of the domain. A
structured mesh is used for grid generation and near the free surface 16 grid points
are distributed in vertical direction in the wave height. In the air and under the water
a non-uniform mesh is used. One hundred grid points are uniformly distributed in the
x direction per wavelength which produces mesh independent results. The wavelength
for the water wave is calculated using a dispersion relation given by σ 2 = gk tanh(kh).

We consider six cases some of which are described in the work of Mitsuyasu &
Honda (1982) for the purpose of comparison, three cases for deep water waves
and three cases for intermediate depth water waves of varying steepnesses. These
six different cases will help validate the numerical results across a broad spectrum
of wave steepness and water depth which are of interest to oceanographers and
hydrodynamicists. Case 1 (C1) is the intermediate depth water wave in which the
wave steepness is 2a/L = 0.04, h/L = 0.2 and T = 0.7592 s. Case 2 (C2) is the deep
water wave in which the wave steepness is 0.04, h/L = 0.6 and T = 0.6 s. Case 3
(C3) is intermediate depth water wave with a wave steepness of 0.06, h/L = 0.2 and
T = 0.7592 s. Case 4 (C4) is a deep water wave with a wave steepness of 0.06,
h/L = 0.6 and T =0.6 s. Case 5 (C5) is an intermediate depth water wave case with
wave steepness of 0.08, h/L =0.2 and T = 0.7592 s and Case 6 (C6) is an deep water
wave with wave steepness of 0.08, h/L =0.6 and T =0.6 s. In order to compare
with the experiment an additional case for intermediate depth water waves (Cex)
is also included for discussion of energy density variation along the domain. The
wave steepness in this case is 2a/L = 0.06, h/L =0.44 and T = 0.7 s. The maximum
wave steepness is set at 0.08, the waves are about to break when the wave steepness
increases further. All calculations are performed under zero average wind speed and
little velocity fluctuation has been found in the water, therefore the analysis focus on
laminar flow.

4. Numerical results and discussion
4.1. Energy density

In order to investigate the effect of viscosity on the decay rate of water wave and
validate the numerical calculations we compare the numerically calculated decay rate
of water wave with the experimental measurement. A potential energy density factor
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αPE is defined by

αPE =
PE

E0

, (4.1)

where potential energy density for a progressive wave is given by

PE =
1

L

∫ x+L

x

ρwgη2

2
dx, (4.2)

where E0 is the total energy at the inlet and is given by

E0 =
1

2
ρwga2. (4.3)

The kinetic energy density factor in the water waves is

αKE =
KE

E0

, (4.4)

where kinetic energy density is given by

KE =
1

L

∫ x+L

x

∫ h+η

0

ρw

(
u2 + v2

2

)
dx dy. (4.5)

The total energy density factor is the sum of the potential energy density factor and

the kinetic energy density factor and is given by

αT = αPE + αKE. (4.6)

The time averaged results for the total, potential and kinetic energy density factors
are calculated by

αT =
1

T

∫ T

0

αT dt, (4.7)

αPE =
1

T

∫ T

0

αPE dt, (4.8)

αKE =
1

T

∫ T

0

αKE dt. (4.9)

On comparing the time averaged numerical results for the total, potential and kinetic
energy density factors in the intermediate depth water waves (case Cex , figure 3) and
deep water waves (case C4, figure 4), we found that the numerical results are in good
agreement with theoretical and experimental results described in Mitsuyasu & Honda
(1982). The most noticeable difference observed is the wave energy density decay rate
in both cases for the same water depth. The deep water wave shows higher decay
rate than the intermediate depth water wave over the same distance travelled since
the deep water has more waves than the intermediate depth water over the same
length of the solution domain. This can be seen in table 1 which shows the decay
rate � calculated from the time averaged total energy density factor, by fitting the
relationship

E

E0

= αT = exp(−�x). (4.10)
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Theoretical total energy density factor (Mitsuyasu & Honda 1982)

Experimental total energy density factor (Mitsuyasu & Honda 1982)

Time averaged total energy density factor (numerical)

 Time averaged kinetic energy density factor (numerical)

 Time averaged potential energy density factor (numerical)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
n
er

g
y
 d

en
si

ty
 f

ac
to

r

1 2 3 4 5 6 7

x/L

Figure 4. Time averaged energy density factor versus x ; case C4, 2a/L =0.06, h/L = 0.6.



Numerical simulation of viscous, nonlinear and progressive water waves 453

H /L T (s) �theory �exp �num

0.06 0.7 1.83 × 10−4 1.65 × 10−4 1.727 × 10−4

0.06 0.6 2.38 × 10−4 2.10 × 10−4 1.914 × 10−4

Table 1. Exponential decay rate �; E = E0 exp(−�x).

Kurtosis (numerical) - 1.537
Kurtosis (linear)        - 1.50
Kurtosis (Stokes)      - 1.545

Kurtosis (numerical) - 1.504
Kurtosis (linear)        - 1.50
Kurtosis (Stokes)      - 1.509
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Figure 5. Free surface in the potential flow versus viscous flow for cases (a) C1: 2a/L = 0.04,
h/L = 0.2; (b) C2: 2a/L = 0.04, h/L = 0.6 (c) C5: 2a/L =0.08, h/L = 0.2 and (d ) C6:
2a/L = 0.08, h/L = 0.6; —, the numerical result; − · −·, the potential flow; − − −, the Stokes
wave.

Theoretical and experimental values of � (�theory and �exp) are from Mitsuyasu
& Honda (1982). The decay rate calculated from numerical results (�num ) show very
good agreement with the theoretical and experimental values.

To better understand the physics leading to the difference in decay rate, we analyse
various aspects of viscous, nonlinear, rotational and transient water waves in the
following sections.

4.2. Free surface comparison

The comparison of the profiles of the free surfaces produced by the potential flow, the
Stokes wave and the numerical calculations for the intermediate depth water waves
cases C1 and C5 and deep water waves cases C2 and C6 is made in figure 5. The
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kurtosis of these wave profiles is quantified by following formula:

k =
ΣN

i=1(η − η̄)4

(N − 1)s4
, (4.11)

where η̄ is the mean of η, s is the standard deviation of η and N represents the number
of data points. In the cases of small wave steepness cases C1 and C2 (2a/L = 0.04),
the Stokes flow and numerical solutions have a flatter surface in the trough and a
sharper crest near the peak of the wave as compared to potential flow, consequently
they have larger kurtosis than the potential flow. It is an expected behaviour due
to nonlinearity of water wave, which causes the wave to loose the sinusoidal shape
leading to sharper crest and flatter trough. The Stokes wave and numerical results
also produce an increase in the free surface location near the peak because when
the trough becomes flatter the water mass is moved to crest in order to maintain
the mass conservation, which leads to a higher crest. In the cases of large wave
steepness C5 and C6 (2a/L = 0.08), the kurtosis of the Stokes wave and numerical
solution increases further, therefore, the flat surface near the trough extends further
horizontally and the crest becomes even sharper and hence the effect of nonlinearity
has become much significant. The intermediate depth water waves in cases C1 and
C5 have more steeper surface at the crest than deep water wave mainly due to
displacement from the bottom boundary forcing the water to move towards the crest
region. We also observe from figure 5(c) that the intermediate depth water wave starts
loosing its symmetry with the increase in the wave steepness, and a small forward
bending of the wave is seen due to the effect of bottom whereas the deep water waves
in figure 5(d ), on the other hand, tend to be symmetrical and have the wave profile
similar to linear potential flow and nonlinear Stokes wave.

4.3. Velocity vectors and streamlines in the water waves

4.3.1. Velocity vectors

The velocity is non-dimensionalized is calculated as

u =
u

akc
, (4.12)

v =
v

akc
. (4.13)

In figure 6, a typical velocity vector distributions in the water show the periodic
feature of the waves. To investigate further, velocity distributions in cases C3 and
C4 are plotted in figures 8 and 10 and compared with the analytical solutions of the
corresponding potential flows in figures 7 and 9. The contours of velocity magnitude
for cases C3 and C4 as per the analytical solutions of the potential flow and the
numerical results for the viscous flow are also shown in figures 7–10, respectively. On
comparing these results, we observe that for the viscous flow in figures 8 and 10 the
velocity contours with the values which are lower than 0.8 move to higher locations;
this indicates that in most lower parts of the water wave, the velocity of the viscous
flow is lower than the potential flow because of the resistance from the viscosity. We
also observe that in the cases of the viscous flows the velocity becomes higher in the
crest than the potential flow because the resistance from the friction in the water
decreases from the water into the air and this allows a higher velocity in the crest.
In the case of intermediate depth water wave as seen in figure 8, an increase in the
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Figure 6. Non-dimensional velocity vectors in the domain of viscous flow.
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Figure 7. Non-dimensional velocity vectors with velocity contours in a typical wave of
potential flow; case C3: 2a/L = 0.06, h/L = 0.2.

maximum velocity near the crest of the viscous flow is about 66 %, which is double
compared with an increase in figure 10 in deep water wave of 33 %, indicating that
bottom boundary can increase velocity near the crest substantially.
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Figure 8. Non-dimensional velocity vectors with velocity contours in a typical wave of
viscous flow; case C3: 2a/L = 0.06, h/L = 0.2.
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Figure 9. Non-dimensional velocity vectors with velocity contours in a typical wave of
potential flow; case C4: 2a/L = 0.06, h/L = 0.6.

4.3.2. Streamlines

To investigate further we plot streamlines in the water waves. The stream function
ψ is non-dimensionalized by wave amplitude a and wave speed c:
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Figure 10. Non-dimensional velocity vectors with velocity contours in a typical wave of
viscous flow; case C4: 2a/L =0.06, h/L =0.6.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x/L

y/
h

Figure 11. Streamlines in the domain of viscous flow.

ψ =
ψ

ac
. (4.14)

Figure 11 shows instantaneous streamlines in the domain of case C4. It mostly
shows periodic and symmetric distribution of streamlines in the domain. For further
analysis, figures 12 and 14 show the streamlines in cases C3 and C4 produced by
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Figure 12. Streamlines in a typical wave of potential flow; case C3: 2a/L = 0.06, h/L = 0.2.
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Figure 13. Streamlines in a typical wave of viscous flow; case C3: 2a/L = 0.06, h/L = 0.2.

the analytical solution of the potential flow. Figures 13 and 15 show the streamlines
produced by the numerical simulations of the nonlinear viscous flow. Similar to the
velocity contours, the streamlines of the viscous flow in most parts of the domain
are located at higher places than those of the potential flow. Under the trough, the
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Figure 14. Streamlines in a typical wave of potential flow; case C4: 2a/L = 0.06, h/L = 0.6.
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Figure 15. Streamlines in a typical wave of viscous flow; case C4: 2a/L = 0.06, h/L =0.6.

viscous flow has smaller negative maximum values for the stream function and under
the crest it has higher positive maximum values. This indicates that the fluid tries
to move towards the crest where it encounters less resistance. All the numerically
produced instantaneous streamlines in figures 13 and 15 and all other cases are very
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z
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Figure 16. A representation of the behaviour of the vorticity field with depth given by (4.17).

smooth and regularly distributed, these are the evidences of laminar flows in the water
presented in this paper.

4.4. Vorticity field

We now investigate the vorticity in the domain. Numerical results of the vorticity are
obtained after solving the full Navier–Stokes equations for the unsteady, nonlinear
and viscous water waves. In order to reveal the characteristics of the viscous flow, it is
desirable to calculate the vorticity at every point under the wave and this is given by

ω =
∂v

∂x
− ∂u

∂z
, (4.15)

where z = y − h, while the non-dimensional vorticity is defined as

ω = ω/(2akσ ). (4.16)

According to Kinsman (1965) and Lamb (1932), for a low-Reynolds-number flow, the
analytical solution for the vorticity in water wave with small amplitude is given by

ω = −2akσe{( σ
2ν )

1
2 z− 2σ

Rw
t} cos

[
kx +

(
σ

2ν

) 1
2

z + σ t

]
, (4.17)

where ν is the kinematic viscosity of the fluid and Rw is the wave Reynolds number,
which is defined as

Rw =
σ

νk2
. (4.18)

The behaviour of the vorticity field given by (4.17) is sketchily shown in figure 16.
We can see that the vorticity is damped to zero exponentially in an oscillatory
manner with increase in the water depth and this analytical solution has revealed an
important fact that the oscillation of vorticity is caused by the viscosity.
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Figure 17. Non-dimensional vorticity (ω) of case C4: 2a/L = 0.06, h/L = 0.6.

The vorticity profile produced by the inviscid rotational Gerstner wave (Gerstner
1802) can be found from Lamb (1932):

ω = − 2a2k2σe2kz0

1 − a2k2e2kz0
, (4.19)

where z0 is a parameter given by

x =
θ

k
+ aekz0 sin θ, (4.20)

z = z0 − aekz0 cos θ. (4.21)

The vorticity is damped in the Gerstner’s wave (Gerstner 1802) but does not produce
oscillations, which indicates that water rotates in the same direction in the whole
domain.

A typical numerical result for the vorticity field under the water waves for case
C4 is shown in figure 17. It reveals the oscillatory distribution of the vorticity, which
indicates that water rotates in different directions in different parts of the domain.
In this figure we observe a periodic thick layer of active vorticity near the water
surface. The magnitude of the vorticity becomes smaller and reduces to zero with the
increase in depth. In the all six cases the global distributions of vorticity are similar to
figure 17.

We now reveal the details of vorticity for the deep water waves (cases C2 and C6)
and intermediate depth water waves (cases C1 and C5) with varying steepness. In
figures 18–21 we see a similar vorticity distributions in all cases. Along the water
surface, the vorticity changes from negative maximum at the trough to positive
maximum at the crest. The vorticity in the crest and trough is different in direction
signifying the ‘anticlockwise’ and ‘clockwise’ rotation of the fluid respectively. This
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numerically revealed variation of vorticity on the water surface is consistent with
that described by the term −cos(kx) in (4.17) and −cos(ks) given by Longuet-Higgins
(1992). Under the positive vorticity region at the crest is a layer of negative vorticity
which extends from trough to trough and from this layer down to the bed we observe
that the layers with positive and negative vorticity reduce to smaller values with
increasing in water depth.

In the cases of deep water waves as seen in figures 18 and 19, we observe that
the values of non-dimensional vorticity are almost the same, this indicates that the
vorticity ω is mainly proportional to akσ ; however, small differences do exist when
the wave steepness changes. The vorticity layers are thinner for smaller ak in case C2
compared with case C6; larger negative vorticity magnitude in the trough region and
larger positive vorticity magnitude are observed with the increase in wave steepness.
Moreover, the negative vorticity layer extending from trough to trough increases in
both magnitude and thickness with increase in wave steepness. Near to the bottom
the vorticity magnitude is too small to be visible.

In the cases C1 and C5, referring to intermediate depth water waves as seen in
figures 19 and 21, respectively, the vorticity contours show a distribution similar to the
deep water depth waves, but for the same wave steepness the vorticity of intermediate
depth water waves has larger magnitude due to effect of the bed, therefore for
the intermediate depth water waves the bottom boundary is found to have much
bigger effect on generation and diffusion of vorticity both near the free surface
as well as inside the domain. On comparing the maximum vorticity magnitude in
intermediate depth water waves with deep water waves, we observe an increase of
33 % and 66 % of vorticity magnitude in the crest and trough region respectively
while, near the bottom boundary too, the intermediate depth water waves have
larger vorticity magnitude compared with deep water waves. Thus stronger vorticity
oscillations are produced with increase in wave amplitude or decrease in water
depth.

To further investigate the behaviour of vorticity along the depth, the non-
dimensional vorticity versus non-dimensional height is plotted at three different
locations (x/L = 0, 0.25, 0.5) and compared with the analytical solutions given
by Lamb (1932) for the Gerstner’s trochoidal waves (Gerstner 1802) and for the
low-Reynolds-number flow outlined by Kinsman (1965). Because of the remarkable
similarity in vorticity behaviour with the depth, we present the vorticity distributions
of water waves with steepness values 0.04 at these three locations in figures 22–24.
The analytical solutions are plotted at locations x/L= 0 and 0.5 as they are the
main region of interest. From figures 22–24 we can observe a remarkable similarity
in vorticity behaviour with the depth at various locations. The magnitude of vorticity
and the thickness of vorticity layer predicted by the numerical solutions of the viscous
flow are much larger than the analytical solutions. The solution for the low Reynolds
number flow suggests a very thin layer of vorticity just below the water surface and
the vorticity generated on the water surface quickly reduces to zero. This is because
a low Reynolds number flow is a very viscous flow, the viscosity not only prevents
the production of large vorticity but also slows down the rotation of the flow very
rapidly in a very thin layer. On the other hand, the solution for the Gerstner’s wave
is damped less quickly with depth but without oscillations.

Figure 22 depicts the vorticity magnitude varying with depth under the trough of the
wave at x/L = 0. On comparing with analytical vorticity magnitude we observe much
higher ‘clockwise’ rotating vortices of viscous flow. A small increase of magnitude in
the deep water is observed when the wave steepness increases. For the same wave
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Figure 22. In case C2: 2a/L = 0.04, h/L = 0.6: x/L = 0; —, the current numerical simulation
result; - - -, the analytical solution for Gerstner’s wave (Lamb 1932); − · −·, the analytical
solution of low-Reynolds-number flow (Kinsman 1965).
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Figure 23. In case C2: 2a/L = 0.04, h/L = 0.6: x/L= 0.25; —, the current numerical
simulation result; - - -, the analytical solution for Gerstner’s wave (Lamb 1932).

steepness we observe higher vorticity magnitude near the trough for the intermediate
depth water wave in case C5 in figure 21 as compared with deep water waves from
case C6 in figure 19, this is due to the bottom boundary where the velocity is zero
and being nearer to both trough and crest it leads to higher velocity gradients and
consequently higher vorticity.

Moving further downstream to x/L= 0.25, we observe, from figure 23 that the
magnitude of the vorticity on the free surfaces is close to zero, but oscillatory
behaviour is still produced inside the water by viscous flow. It is shown in figures 18
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Figure 24. In case C2: 2a/L = 0.04, h/L =0.6: x/L= 0.5; —, the current numerical simulation
result; - - -, the analytical solution for Gerstner’s wave (Lamb, 1932); − · −·, the analytical
solution of low-Reynolds-number flow (Kinsman, 1965).

and 19 that with the increase in the wave steepness from 0.04 to 0.08 in the deep
water the negative vorticity layer becomes thicker. When the water depth decreases
from deep water in figure 19 to the intermediate depth water in figure 21 the negative
vorticity layer also becomes thicker.

As we move towards the crest at x/L =0.5, in figure 24 we observe an ‘anticlockwise’
rotation of water flow attributed to the positive vorticity near the crest and the
maximum value of positive vorticity is observed on the free surface at the crest;
moreover, the maximum positive value is much higher than the maximum negative
value at x/L= 0 and x/L= 0.5, and again much larger vorticity magnitude and
thickness is observed than that predicted by the theories. For a small wave steepness
in figure 18 the positive vorticity region is thinner than the larger wave steepness in
figure 19. When water depth decreases from deep water in figure 19 to intermediate
depth water in figure 21 where the wave is about to break, we observe significant
increases in both negative and positive vorticities. Thus, with the decrease in depth
of water, we find an increasing effect of bed on the near surface vorticity.

Moving down to the lee side of the wave at x/L= 0.75, the vorticity distributions are
nearly repeated in magnitude and rotation along the depth and similar to location
x/L= 0.25. Similarly, as we move towards the end of the wave at x/L= 1, we
observe the vorticity pattern being repeated in magnitude and rotation similar to that
at x/L= 0.

4.5. Shear stress

Non-dimensionalized shear stress in the flow τ is defined by

τ = τm/(2μwakσ ), (4.22)

where

τm = μm

(
∂u

∂y
+

∂v

∂x

)
. (4.23)
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Figure 25. Non-dimensional shear stress (τ ) contours of case C4: 2a/L = 0.06, h/L = 0.6.
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Figure 26. Non-dimensional shear stress (τ ) contours of case C3: 2a/L = 0.06, h/L = 0.2.

The distributions of non-dimensionalized shear stress in the domain for a deep water
wave and a intermediate deep water are shown in figures 25 and 26 respectively. The
shear stress in the air regions above the free surface shows much less variation in both
cases and is much smaller compared to the water, hence aiding the assumption about
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Figure 27. Non-dimensional shear stress (τ ) contours in a typical wave in case
C2: 2a/L = 0.04, h/L = 0.6.

the magnitude of shear stress being considered to be zero on the free surface in the
majority of the theoretical studies. However, it should be noticed that the reason of
such smaller shear stress in the air is because the viscosity of air is less than 2 % of the
viscosity of water, it is that this much smaller viscosity of air leads to a much smaller
shear stress but the strain rate is not small near the free surface (a further discussion
on the strain rate near the free surface will be given in other paper). We observe
that in both cases the shear stress distributions show high degree of similarity. The
most important feature is the existence of a periodic thick layer of shear stress under
the water surface. From the free surface to inside of the water, shear stress increases
rapidly under the crest and trough. We observe in both cases that a maximum shear
stress which is positive is inside the water but close to the free surface of the crest.
A negative shear stress layer is observed near the crest and under this layer there is
a positive shear layer extending from trough to trough. Under the crest, this positive
shear stress layer extends down to the bottom and under the trough the positive shear
stress layer oscillates to a negative shear stress region which extends to the bottom
and the magnitude of shear stress becomes smaller with the increase in the depth.
Under the large shear stress layer near the free surface, most of the domain of water
wave is divided into vertical stripes by vertical lines on which the shear stress is zero
and in the stripes under the crest the shear stress is positive while under the trough
it is negative.

We analyse a typical wave in all the cases by a detailed observation. In the deep
water wave cases C2 and C6 as seen in figures 27 and 28 we observe that with the
increase of the wave steepness the area of negative shear stress the crest extends
less horizontally but becomes thicker in vertical direction. We also observe that
the contour lines move downwards when the wave steepness increase, this indicates
that shear stress in whole solution domain increases with the increase of the wave
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Figure 28. Non-dimensional shear stress (τ ) contours in a typical wave in case
C6: 2a/L = 0.08, h/L = 0.6.

steepness. Similar to the deep water waves, the shear stress in the intermediate depth
water waves in figures 29 and 30 increases when the wave steepness increases and
a larger increase takes places under the crest and trough. A significant increase in
positive shear stress occurs under the crest in figure 30 where the wave is about to
break. On comparing the intermediate depth water waves with deep water waves,
we observe that intermediate depth waves produce larger magnitude shear stresses
in whole solution domain, this is clearly caused by the effect of bottom, which is
due to the increase in vertical velocity gradient inside the water because the bottom
boundary restricts the movement of water particles along the desired path. Therefore,
the bed has larger effect on the flow in the intermediate depth water.

5. Conclusion
A numerical scheme developed by Zwart, Burns & Galpin (2007) that uses the

VOF for interface tracking has been successfully applied to the numerical simulation
of two dimensional progressive and viscous water waves. A second-order implicit time
stepping scheme, the second-order upwind biased scheme for momentum conservation
and high resolution scheme for mass conservation are found to be efficient for
solving full Navier–Stokes equations for the nonlinear, transient and viscous water
waves. The numerical results for decay of energy are in excellent agreement with the
theoretical and experimental results of Mitsuyasu & Honda (1982). Other interesting
aspects in water waves such as velocity vectors and streamlines have been compared
with their counterpart given by the potential flow. The numerical solutions have also
revealed the effect of nonlinearity on the profiles of free surface. We have found that
the potential flow is inaccurate for describing many aspects of energy dissipation,
vorticity and shear stress of real water waves. An objective analysis on the effect of
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Figure 29. Non-dimensional shear stress (τ ) contours in a typical wave in case
C1: 2a/L = 0.04, h/L = 0.2.
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Figure 30. Non-dimensional shear stress (τ ) contours in a typical wave in case
C5: 2a/L = 0.08, h/L = 0.2.
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viscosity on the water waves has been carried out and revealed interesting
features of the vorticity and shear stress in the water waves. The numerical results of
vorticity show ‘clockwise’ and ‘anticlockwise’ vortices in the whole domain of water
waves, signifying oscillatory behaviour of vorticity. Similarly, oscillations of shear
layers are also observed on the crest and trough of the water wave and maximum
shear stress is inside the crest of water wave, just below the free surface. The
numerical results also show that the wave steepness and water depth significantly
affect the water waves. The effects of shear stress inside the water waves have
received less attention but are here shown to be an important aspect in water waves.
It can be expected that the viscous effects play a larger role when studying mass and
momentum transfer in the coupled air–sea interaction.
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